'*********************************************************************** '* Response of a 1dof Mass-Spring System with damping to a sinusoidal * '* input force * '* ------------------------------------------------------------------- * '* Main Variables: * '* M: Mass * '* K: Stiffness * '* C: Viscous Damping Coefficient * '* E: Structural Damping Coefficient * '* F0: Input Force * '* ------------------------------------------------------------------- * '* SAMPLE RUN: * '* * '* Mass M..... = 50 * '* Stiffness K = 1e6 * '* Force F0... = 10000 * '* * '* (V)iscous or (S)tructural Damping: S * '* * '* Structural damping factor: 0.05 * '* * '* Frequency Scanning * '* * '* Resonance Frequency of undamped system = 22.508 * '* * '* Starting frequency = 20 * '* Ending frequency...= 25 * '* Frequency step.....= 0.25 * '* * '* Frequency Displacement Phase (deg) * '* -------------------------------------- * '* 20.00 0.046234 13.366013 * '* 20.25 0.050756 14.701446 * '* 20.50 0.056293 16.347699 * '* 20.75 0.063206 18.423074 * '* 21.00 0.072037 21.111461 * '* 21.25 0.083609 24.711299 * '* 21.50 0.099181 29.729354 * '* 21.75 0.120525 37.058260 * '* 22.00 0.149218 48.252814 * '* 22.25 0.181993 65.500492 * '* 22.50 0.199980 89.194985 * '* 22.75 0.183564 -66.609176 * '* 23.00 0.149839 -48.520651 * '* 23.25 0.119585 -36.721514 * '* 23.50 0.097048 -29.028193 * '* 23.75 0.080680 -23.790753 * '* 24.00 0.068578 -20.053143 * '* 24.25 0.059388 -17.273961 * '* 24.50 0.052222 -15.136029 * '* 24.75 0.046502 -13.444959 * '* 25.00 0.041843 -12.076311 * '* * '* ------------------------------------------------------------------- * '* REFERENCE: "Mecanique des vibrations lineaires By M. Lalanne, * '* P. Berthier, J. Der Hagopian, Masson, Paris 1980" [16]. * '* * '* Quick Basic Release By J-P Moreau, Paris. * '*********************************************************************** 'Program SIN1DOF DEFDBL A-H, O-Z DEFINT I-N DIM M AS DOUBLE DIM K AS DOUBLE DIM C2 AS INTEGER DIM I1 AS DOUBLE DIM M1 AS DOUBLE PI = 3.1415926535# CLS PRINT INPUT " Mass M = ", M INPUT " Stiffness K = ", K INPUT " Force F = ", F0 PRINT 380 INPUT " (V)iscous or (S)tructural Damping: ", B$ IF B$ = "V" THEN 450 IF B$ = "S" THEN 500 GOTO 380 450 PRINT INPUT " Viscous damping coefficient C = ", C C2 = 1 GOTO 540 500 PRINT INPUT " Structural damping factor: ", E C2 = 2 540 PRINT PRINT " Frequency Scanning" PRINT F4 = 1# / 2# / PI * SQR(K / M) PRINT USING " Resonanve Frequency of undamped system = ###.### Hz."; F4 PRINT INPUT " Starting frequency = ", F1 INPUT " Ending frequency...= ", F2 INPUT " Frequency step.....= ", F3 F = F1 CLS PRINT PRINT " Frequency Displacement Phase (deg) " PRINT " -------------------------------------- " 940 W = 2 * PI * F IF C2 = 2 THEN 1010 D = (K - M * W * W) ^ 2 + (C * W) ^ 2 O1 = (K - M * W * W) / D ^ .5 I1 = C * W / D ^ .5 M1 = F0 / SQR(D) GOTO 1050 1010 D = (K - M * W * W) ^ 2 + (E * K) ^ 2 O1 = (K - M * W * W) / D ^ .5 I1 = E * K / D ^ .5 M1 = F0 / SQR(D) 1050 IF M1 <> 0 THEN GOTO 1140 T1 = 0 GOTO 1180 1140 IF O1 = -1 THEN T1 = PI GOTO 1180 END IF IF O1 = 1 THEN T1 = 0 GOTO 1180 END IF IF I1 < 0 THEN GOTO 1170 'T1 = ACOS(O1) T1 = ATN(SQR(1 - O1 ^ 2) / O1) GOTO 1180 1170 T1 = 2 * PI - ATN(SQR(1 - O1 ^ 2) / O1) 1180 T3 = T1 / PI * 180 PRINT USING " ###.##"; F; PRINT USING " ###.######"; M1; PRINT " "; PRINT USING " ###.######"; T3 F = F + F3 IF F <= F2 THEN 940 END 'end of file 1dof01.bas