'***************************************************** '* Euclidian division of two polynomials * '* R(x) = P(x) / Q(x) * '* ------------------------------------------------- * '* Ref.: "Mathematiques en Turbo-Pascal by M. Ducamp * '* and A. Reverchon (vol 2), Eyrolles, Paris, 1988" * '* [BIBLI 05]. * '* ------------------------------------------------- * '* SAMPLE RUN: * '* * '* EUCLIDIAN DIVISION OF TWO POLYNOMIALS: * '* * '* P(x) = 2x5 +2x3 -x2 +2x -1 * '* Q(x) = x3 -1 * '* * '* * '* Quotient: * '* * '* 2 X2 + 2 * '* * '* Remainder: * '* * '* X2 + 2 X + 1 * '* * '* * '* BASIC version by J-P Moreau. * '* (www.jpmoreau.fr) * '***************************************************** defdbl a-h,o-z defint i-n MAXINT = 32767 'Maximum integer number MAXPOL = 20 'Maximum degree for a polynomial SMALL = 1e-20 'small real number ' number zz (real, integer or fractional) ' isrzz=1: zz is real (double precision) ' isrzz=0: zz is integer or fractional ' zzv: value of zz if real ' ipzz: integer value of zz if integer (or numerator value if fractional) ' iqzz: denominator value if fractional (=1 if integer) 'a polynomial P is defined by: 'integer ipdeg (degree of polynomial) 'number cp(MAXPOL) (coefficients of polynomial, real, integer or fractional) 'predefine 4 polynomials P,Q,R,H DIM isrcp(MAXPOL),cpv(MAXPOL),ipcp(MAXPOL),iqcp(MAXPOL) DIM isrcq(MAXPOL),cqv(MAXPOL),ipcq(MAXPOL),iqcq(MAXPOL) DIM isrcr(MAXPOL),crv(MAXPOL),ipcr(MAXPOL),iqcr(MAXPOL) DIM isrch(MAXPOL),chv(MAXPOL),ipch(MAXPOL),iqch(MAXPOL) cls print print " EUCLIDIAN DIVISION OF TWO POLYNOMIALS:" print tx$=" P(x) = ": gosub 4000 'Enter P(x) 'save P(x) in R(x) irdeg=ipdeg for i=0 to irdeg isrcr(i)=isrcp(i) crv(i)=cpv(i) ipcr(i)=ipcp(i) iqcr(i)=iqcp(i) next i tx$=" Q(x) = ": gosub 4000 'Enter P(x) 'put P(x) in Q(x) iqdeg=ipdeg for i=0 to iqdeg isrcq(i)=isrcp(i) cqv(i)=cpv(i) ipcq(i)=ipcp(i) iqcq(i)=iqcp(i) next i 'restore P(x) from R(x) ipdeg=irdeg for i=0 to ipdeg isrcp(i)=isrcr(i) cpv(i)=crv(i) ipcp(i)=ipcr(i) iqcp(i)=iqcr(i) next i print gosub 500 'call DivPolynom(P,Q,H,R) if IERROR<>0 then print " Error in euclidian division" else 'put H(x) in P(x) for printing ipdeg=ihdeg for i=0 to ipdeg isrcp(i)=isrch(i) cpv(i)=chv(i) ipcp(i)=ipch(i) iqcp(i)=iqch(i) next i print print " Quotient:":gosub 5000 'display P(x) print 'put R(x) in P(x) for printing ipdeg=irdeg for i=0 to ipdeg isrcp(i)=isrcr(i) cpv(i)=crv(i) ipcp(i)=ipcr(i) iqcp(i)=iqcr(i) next i print print " Remainder:":gosub 5000 'display P(x) end if END 'of main program 'DivPolynom(P,Q,H,R) 'NUMBER: u 500 IERROR=1 'The Q polynomial must be <> zero if iqdeg=0 and cqv(0)=0 then return 'Divide by zero error 'put P(x) in R(x) irdeg=ipdeg for i=0 to irdeg isrcr(i)=isrcp(i):crv(i)=cpv(i) ipcr(i)=ipcp(i):iqcr(i)=iqcp(i) next i ihdeg=ipdeg - iqdeg if ihdeg<0 then ihdeg=0: isrch(0)=0:chv(0)=0#:ipch(0)=0:iqch(0)=1 else for ii=ihdeg to 0 step -1 'DivNumber(cr(irdeg),cq(iqdeg),ch(ii)) isrxx=isrcr(irdeg):xxv=crv(irdeg):ipxx=ipcr(irdeg):iqxx=iqcr(irdeg)'xx=cr(irdeg) isryy=isrcq(iqdeg):yyv=cqv(iqdeg):ipyy=ipcq(iqdeg):iqyy=iqcq(iqdeg)'yy=cq(iqdeg) gosub 3200 'zz=xx/yy if IERROR<>0 then return 'divide by zero error isrch(ii)=isrzz:chv(ii)=zzv:ipch(ii)=ipzz:iqch(ii)=iqzz 'ch(ii)=zz for jj=ii to irdeg 'MultNumber(ch(ii),cq[jj-ii), u) isrxx=isrch(ii):xxv=chv(ii):ipxx=ipch(ii):iqxx=iqch(ii) 'xx=ch(ii) k=jj-ii isryy=isrcq(k):yyv=cqv(k):ipyy=ipcq(k):iqyy=iqcq(k) 'yy=cq(jj-ii) gosub 3100 'zz=xx*yy isru=isrzz:uv=zzv:ipu=ipzz:iqu=iqzz 'u=zz ipu=-ipu: uv=-uv 'u=-u 'AddNumber(cr(jj),u, cr(jj)) isrxx=isrcr(jj):xxv=crv(jj):ipxx=ipcr(jj):iqxx=iqcr(jj) 'xx=cr(jj) isryy=isru:yyv=uv:ipyy=ipu:iqyy=iqu 'yy=u gosub 3000 'zz=xx+yy isrcr(jj)=isrzz:crv(jj)=zzv:ipcr(jj)=ipzz:iqcr(jj)=iqzz 'cr(jj)=zz next jj if irdeg > 0 then irdeg=irdeg-1 next ii 510 if abs(crv(irdeg))>=SMALL or irdeg<=0 then goto 520 irdeg=irdeg-1 goto 510 520 end if IERROR=0 return 'DivPolynom $INCLUDE "numeric\polynoms\polynoms.bas" 'end of file divpol.bas