'************************************************************************* '* Response of a N d.o.f. Mass-Spring System with Damping * '* to a sinusoidal Force By a Direct Method * '* --------------------------------------------------------------------- * '* EXPLANATION: * '* Let us consider the 3 d.o.f. Mass-Spring system with viscous damping: * '* * '* --> x1 --> x2 k --> x3 * '* \| k *----* 2k *----*--/\/\/\--*----* * '* \|--/\/\/\--| 2m |--/\/\/\--| m | ---* | 3m | * '* \| *----* *----*---| |----*----* * '* --> F1(t) ---* * '* c * '* | 2 0 0 | * '* The Mass Matrix M is | 0 1 0 | assuming m=1. * '* | 0 0 3 | * '* * '* | 3 -2 0 | * '* The Stiffness Matrix K is | -2 3 -1 | assuming k=1. * '* | 0 -1 1 | * '* * '* | 0 0 0 | * '* The Damping Matrix is | 0 0 0 | assuming c=0.5. * '* | 0 0 0.5 | * '* * '* The resonance fresuencies (neglecting c) are: * '* F1 = w1/2pi = 0.05161 sqr(k/m) * '* F2 = w2/2pi = 0.1431 sqr(k/m) * '* F3 = w3/2pi = 0.3151 sqr(k/m) * '* with the corresponding modal vectors: * '* | 1 | | 1 | | 1 | * '* phi1 = | 1.395 | phi2 = | 0.6914 | phi3 = | -2.420 | * '* | 2.038 | |-0.4849 | | 0.2249 | * '* * '* (See program ndof01.bas). * '* --------------------------------------------------------------------- * '* SAMPLE RUN: * '* * '* How many degrees of freedom (d.o.f.): 3 * '* * '* Input Mass Matrix [M]: * '* M(1,1) = 2 * '* M(1,2) = 0 * '* M(1,3) = 0 * '* M(2,2) = 1 * '* M(2,3) = 0 * '* M(3,3) = 3 * '* * '* Viscous Damping...: VIS * '* Structural Damping: STR * '* * '* Your choice: VIS * '* * '* Input Stiffness Matrix [K]: * '* K(1,1) = 3 * '* K(1,2) = -2 * '* K(1,3) = 0 * '* K(2,2) = 3 * '* K(2,3) = -1 * '* K(3,3) = 1 * '* * '* Input Damping Matrix [C]: * '* C(1,1) = 0 * '* C(1,2) = 0 * '* C(1,3) = 0 * '* C(2,2) = 0 * '* C(2,3) = 0 * '* C(3,3) = 0.5 * '* * '* Input Excitation Vector: * '* F1(1) = 1000 * '* F1(2) = 0 * '* F1(3) = 0 * '* F2(1) = 0 * '* F2(2) = 0 * '* F2(3) = 0 * '* * '* Number of d.o.f. to calculate: 3 * '* * '* Frequency Sweep * '* --------------- * '* Starting Frequency: 0.31 * '* Ending Frequency..: 0.32 * '* * '* Linear frequency step.....: LIN * '* Logarithmic frequency step: LOG * '* * '* Your choice: LIN * '* * '* Frequency Step....: 0.0005 * '* * '* * '* Frequency (Hz) Displacement Phase (deg.) * '* -------------------------------------------- * '* 0.3100 240.66 0.0 * '* 0.3105 264.73 0.0 * '* 0.3110 294.72 0.0 * '* 0.3115 333.08 0.0 * '* 0.3120 383.85 0.0 * '* 0.3125 454.17 0.0 * '* 0.3130 557.90 0.0 * '* 0.3135 725.80 0.0 * '* 0.3140 1041.65 0.0 * '* 0.3145 1824.42 0.0 * '* 0.3150 4347.56 0.0 <-- 3rd resonance * '* 0.3155 2248.74 -0.0 * '* 0.3160 1151.46 -0.0 * '* 0.3165 757.64 -0.0 * '* 0.3170 560.61 -0.0 * '* 0.3175 443.06 -0.0 * '* 0.3180 365.13 -0.0 * '* 0.3185 309.74 -0.0 * '* 0.3190 268.36 -0.0 * '* 0.3195 236.29 -0.0 * '* 0.3200 210.72 -0.0 * '* * '* --------------------------------------------------------------------- * '* REFERENCE: "Mécanique des vibrations linéaires By M. Lalanne, * '* P. Berthier, J. Der Hagopian, Masson, Paris 1980" * '* [BIBLI 16]. * '* * '* Quick Basic Release By J-P Moreau, Paris. * '* (www.jpmoreau.fr) * '************************************************************************* 'PROGRAM NDOF03 DEFDBL A-H, O-Z DEFINT I-N PI = 4# * ATN(1#) CLS PRINT INPUT " How many degrees of freedom (d.o.f.): ", N N2 = 2 * N DIM M(N, N) AS DOUBLE DIM K1(N, N) AS DOUBLE DIM K2(N, N) AS DOUBLE DIM A(N2, N2), X(N2), B(N2), B1(N2, 1) DIM C9 AS INTEGER DIM I1 AS DOUBLE DIM M1 AS DOUBLE PRINT PRINT " Input Mass Matrix [M]:" PRINT FOR I = 1 TO N FOR J = I TO N PRINT " M("; I; ","; J; ") = "; : INPUT "", M(I, J) NEXT J NEXT I PRINT PRINT " Viscous Damping...: VIS" PRINT " Structural Damping: STR" PRINT INPUT " Your choice: ", ANS$ IF ANS$ = "VIS" THEN GOTO 600 'case structural damping C9 = 2 PRINT PRINT " Input stiffness Matrix [K1]:" FOR I = 1 TO N FOR J = I TO N PRINT " K1("; I; ","; J; ") = "; : INPUT "", K1(I, J) NEXT J NEXT I PRINT PRINT " Input Damping Matrix [K2]:" FOR I = 1 TO N FOR J = I TO N PRINT " K2("; I; ","; J; ") = "; : INPUT "", K2(I, J) NEXT J NEXT I PRINT GOTO 900 600 'case viscous damping C9 = 1 PRINT PRINT " Input stiffness Matrix [K]:" FOR I = 1 TO N FOR J = I TO N PRINT " K("; I; ","; J; ") = "; : INPUT "", K1(I, J) NEXT J NEXT I PRINT PRINT " Input Damping Matrix [C]:" FOR I = 1 TO N FOR J = I TO N PRINT " C("; I; ","; J; ") = "; : INPUT "", K2(I, J) NEXT J NEXT I PRINT 900 'Complete Matrices by symmetry FOR I = 1 TO N FOR J = I TO N K1(J, I) = K1(I, J) K2(J, I) = K2(I, J) M(J, I) = M(I, J) NEXT J NEXT I PRINT PRINT " Input Excitation Vector:" FOR I = 1 TO N PRINT " F1("; I; ") = "; : INPUT " ", B(I) NEXT I PRINT FOR I = N + 1 TO N2 J = I - N PRINT " F2("; J; ") = "; : INPUT " ", B(I) NEXT I PRINT INPUT " Number of d.o.f. to calculate: ", N3 PRINT 'calculate numerical response of d.o.f. #N3 PRINT PRINT " Frequency Sweep" PRINT " ---------------" PRINT 1400 INPUT " Starting frequency = ", F1 INPUT " Ending frequency...= ", F2 PRINT PRINT " Linear frequency step.....: LIN" PRINT " Logarithmic frequency step: LOG" PRINT INPUT " Your choice: ", ANS$ PRINT IF ANS$ = "LOG" THEN GOTO 1660 'case linear step INPUT " Frequency step: ", F3 GOTO 1750 1660 'case log. step IF F1 = 0 THEN PRINT " CAUTION - Starting frequency must be > 0 for log. step." GOTO 1400 ELSE INPUT " Number of constant log. increments from F1 to F2: ", F3 F3 = 10 ^ ((LOG(F2) - LOG(F1)) / LOG(10#) / F3) END IF 1750 'print header PRINT PRINT " Frequency (Hz) Displacement Phase (deg.)" PRINT " --------------------------------------------" F = F1 'Initialize frequency 1760 W = 2# * PI * F FOR I = 1 TO N I1 = I + N FOR J = 1 TO N J1 = J + N A(I, J) = K1(I, J) - W * W * M(I, J) A(I1, J1) = A(I, J) IF C9 = 1 THEN A(I1, J) = K2(I, J) * W ELSE A(I1, J) = K2(I, J) END IF A(I, J1) = -A(I1, J) NEXT J NEXT I 'A=INV(A) NOLD = N: N = N2: M = 0: GOSUB 1000 'A=INV(A) N = NOLD 'X=A MPY B FOR I = 1 TO N2 SUM = 0# FOR J = 1 TO N2 SUM = SUM + A(I, J) * B(J) NEXT J X(I) = SUM NEXT I M1 = SQR(X(N3) ^ 2 + X(N3 + N) ^ 2) IF M1 = 0 THEN T1 = 0#: GOTO 1800 ELSE O1 = X(N3) / M1 I1 = -X(N3 + N) / M1 IF O1 = -1# THEN T1 = PI: GOTO 1800 ELSEIF O1 = 1# THEN T1 = 0#: GOTO 1800 ELSE IF I1 >= 0# THEN 'T1=ACOS(O1) T1 = ATN(SQR(1 - O1 ^ 2) / O1) ELSE 'T1=2*PI-ACOS(O1) T1 = 2 * PI - ATN(SQR(1 - O1 ^ 2) / O1) END IF END IF END IF 1800 T1 = T1 / PI / 180 'Convert phase in degrees 'print line of results PRINT USING " ###.####"; F; PRINT USING " ######.##"; M1; PRINT USING " ###.# "; T1 IF ANS$ = "LIN" THEN F = F + F3 ELSE F = F * F3 END IF IF F <= F2 THEN GOTO 1760 'next frequency PRINT END 'of main program '******************************************* '* SOLVING A LINEAR MATRIX SYSTEM AX = B1 * '* with Gauss-Jordan method using full * '* pivoting at each step. During the pro- * '* cess, original A and B matrices are * '* destroyed to spare storage location. * '* --------------------------------------- * '* INPUTS: A MATRIX N*N * '* B1 MATRIX N*M * '* --------------------------------------- * '* OUTPUS: A INVERSE OF A N*N * '* DET DETERMINANT OF A * '* B1 SOLUTION MATRIX N*M * '* --------------------------------------- * '* NOTA - If M=0 inversion of A matrix * '* only. * '******************************************* 1000 'Subroutine MATINV 'Labels: 100, 200, 300 'Initializations DET = 1# FOR I = 1 TO N PC(I) = 0# PL(I) = 0# CS(I) = 0# NEXT I 'Main loop FOR K = 1 TO N 'Searching greatest pivot PV = A(K, K) IK = K: JK = K PAV = ABS(PV) FOR I = K TO N FOR J = K TO N temp = ABS(A(I, J)) IF temp > PAV THEN PV = A(I, J) PAV = ABS(PV) IK = I: JK = J END IF NEXT J NEXT I 'Search terminated, the pivot is in location I=IK, J=JK. 'Memorizing pivot location: PC(K) = JK PL(K) = IK 'DETERMINANT DET is updated 'If DET=0, ERROR MESSAGE and STOP 'Machine dependant EPSMACH equals here 2E-16 IF IK <> K THEN DET = -DET END IF IF JK <> K THEN DET = -DET END IF DET = DET * PV temp = ABS(DET) IF temp < EPSMACH THEN PRINT #2, PRINT #2, " The determinant equals ZERO !!!" END 'stop program END IF 'POSITIONNING PIVOT IN K,K:} IF IK <> K THEN FOR I = 1 TO N 'EXCHANGE LINES IK and K of matrix A:} TT = A(IK, I) A(IK, I) = A(K, I) A(K, I) = TT NEXT I END IF IF M <> 0 THEN FOR I = 1 TO M TT = B1(IK, I) B1(IK, I) = B1(K, I) B1(K, I) = TT NEXT I END IF 'PIVOT is at correct line IF JK <> K THEN FOR I = 1 TO N 'EXCHANGE COLUMNS JK and K of matrix A: TT = A(I, JK) A(I, JK) = A(I, K) A(I, K) = TT NEXT I END IF 'The PIVOT is at correct column. 'and is located in K,K. 'Column K of matrix A is stored in CS vector 'then column K is set to zero. FOR I = 1 TO N CS(I) = A(I, K) A(I, K) = 0# NEXT I CS(K) = 0# A(K, K) = 1# 'Line K of matrix A is modified: temp = ABS(PV) IF temp < EPSMACH THEN PRINT #2, PRINT #2, " PIVOT TOO SMALL - STOP" END 'stop program END IF FOR I = 1 TO N A(K, I) = A(K, I) / PV NEXT I IF M <> 0 THEN FOR I = 1 TO M B1(K, I) = B1(K, I) / PV NEXT I END IF 'Other lines of matrix A are modified: FOR J = 1 TO N IF J = K THEN GOTO 100 END IF FOR I = 1 TO N 'Line J of matrix A is modified: A(J, I) = A(J, I) - CS(J) * A(K, I) NEXT I IF M <> 0 THEN FOR I = 1 TO M B1(J, I) = B1(J, I) - CS(J) * B1(K, I) NEXT I END IF 100 NEXT J 'Line K is ready NEXT K 'end K loop 'MATRIX A INVERSION IS DONE - REARRANGEMENT OF MATRIX A 'EXCHANGE LINES FOR I = N TO 1 STEP -1 IK = INT(PC(I)) IF IK = I THEN GOTO 200 END IF 'EXCHANGE LINES I and PC(I) of matrix A: FOR J = 1 TO N TT = A(I, J) A(I, J) = A(IK, J) A(IK, J) = TT NEXT J IF M <> 0 THEN FOR J = 1 TO M TT = B1(I, J) B1(I, J) = B1(IK, J) B1(IK, J) = TT NEXT J END IF 'NO MORE EXCHANGE is NECESSARY 'Go to next line. 200 NEXT I 'End of loop i=N to 1 step -1 'EXCHANGE COLUMNS FOR J = N TO 1 STEP -1 JK = INT(PL(J)) IF JK = J THEN GOTO 300 END IF 'EXCHANGE COLUMNS J ET PL(J) of matrix A: FOR I = 1 TO N TT = A(I, J) A(I, J) = A(I, JK) A(I, JK) = TT NEXT I 'NO MORE EXCHANGE is NECESSARY 'Go to next column.} 300 NEXT J 'REARRANGEMENT TERMINATED RETURN 'End of subroutine 1000 'end of file ndof03.bas