/***************************************************************** * Program to demonstrate the Bessel function asymptotic series * * -------------------------------------------------------------- * * Reference: BASIC Scientific Subroutines, Vol. II * * By F.R. Ruckdeschel, BYTE/McGRAWW-HILL, 1981 [1]. * * * * C++ Version by J.-P. Moreau, Paris. * * (www.jpmoreau.fr) * * -------------------------------------------------------------- * * SAMPLE RUN: * * * * X J0(X) J1(X) N E * * -------------------------------------------------------------- * * 1 0.733562 0.402234 1 0.1121521 * * 2 0.221488 0.578634 1 0.0070095 * * 3 -0.259956 0.340699 2 0.0007853 * * 4 -0.396826 -0.065886 2 0.0001398 * * 5 -0.177486 -0.327696 3 0.0000155 * * 6 0.150635 -0.276760 3 0.0000036 * * 7 0.300051 -0.004696 4 0.0000004 * * 8 0.171638 0.234650 5 0.0000000 * * 9 -0.090332 0.245324 5 0.0000000 * * 10 -0.245930 0.043476 6 0.0000000 * * 11 -0.171187 -0.176788 5 0.0000000 * * 12 0.047689 -0.223450 5 0.0000000 * * 13 0.206925 -0.070319 4 0.0000000 * * 14 0.171072 0.133376 4 0.0000000 * * 15 -0.014225 0.205105 4 0.0000000 * * -------------------------------------------------------------- * * * *****************************************************************/ #include #include #define PI 4*atan(1) double e, e3, J0, J1, x; double m1, m2, n1, n2; int i, n; /********************************************************* * Bessel function asymptotic series subroutine. This * * program calculates the zeroth and first order Bessel * * functions using an asymptotic series expansion. * * The required input are X and a convergence factor e. * * Returned are the two Bessel functions, J0(X) and J1(X) * * ------------------------------------------------------ * * Reference; Algorithms for RPN calculators, by Ball, * * L.A. Wiley and sons. * *********************************************************/ void Calcul_Bessel() { //Labels: e100, e200 double a,a1,a2,b,c,e1,e2,e4,x1; int m; //Calculate P and Q polynomials; P0(x)=m1, P1(x)=m2, //Q0(x)=n1, Q1(x)=n2 a = 1; a1 = 1; a2 = 1; b = 1; c = 1; e1 = 1e6; m = -1; x1 = 1.0 / (8.0 * x); x1 = x1 * x1; m1 = 1.0; m2 = 1.0; n1 = -1.0 / (8.0 * x); n2 = -3.0 * n1; n = 0; e100: m = m + 2; a = a * m * m; m = m + 2; a = a * m * m; c = c * x1; a1 = a1 * a2; a2 = a2 + 1.0; a1 = a1 * a2; a2 = a2 + 1.0; e2 = a * c / a1; e4 = 1.0 + (m + 2) / m + (m + 2) * (m + 2) / (a2 * 8 * x) + (m + 2) * (m + 4) / (a2 * 8 * x); e4 = e4 * e2; //Test for divergence if (fabs(e4) > e1) goto e200; e1 = fabs(e2); m1 = m1 - e2; m2 = m2 + e2 * (m + 2) / m; n1 = n1 + e2 * (m + 2) * (m + 2) / (a2 * 8 * x); n2 = n2 - e2 * (m + 2) * (m + 4) / (a2 * 8 * x); n++; //Test for convergence criterion if (e1 < e3) goto e200; goto e100; e200: a = PI; e = e2; b = sqrt(2.0 / (a * x)); J0 = b * (m1 * cos(x - a / 4) - n1 * sin(x - a / 4.0)); J1 = b * (m2 * cos(x - 3 * a / 4.0) - n2 * sin(x - 3 * a / 4.0)); } void main() { e3=1e-8; printf("\n X J0(X) J1(X) N E \n"); printf("------------------------------------------------------------------\n"); for (i = 1; i < 16; i++) { x = (double) i; Calcul_Bessel(); printf(" %2d %9.6f %9.6f %d %9.7f\n",i,J0,J1,n,e); } printf("------------------------------------------------------------------\n"); } // End of file Bessel1.cpp