EXPLANATION FILE OF PROGRAM CMPLXSER ==================================== Complex Series -------------- Once the coefficients of the approximating polynomial of a function f(x) have been found, the results can easily be extended into the complex plane P(Z) = a + a Z + a Z^2 + ... where Z = x + iy (2.9.1) 0 1 2 This can be accomplished by employing a few of the complex algebra subroutines in the first volume of BASIC Scientific Subroutines. The result is the complex evaluation program CMPLXSER. This program uses three other routines concerning complex numbers. The inputs to CMPLXSER are the degree of the polynomial (M), the corres- ponding coefficients [A(i); real), and the real and imaginary parts of the argument (X and Y respectively). The result of the summation is returned in two parts, a real (Z1) and an irnaginary (Z2) component. As you can see from the examples given, program CMPLXSER is easy to use and has good round-off error properties. CMPLXSER can be employed to very effectively extend the application of the computer to the evaluation of functions having cornplex arguments. From [BIBLI 01]. ------------------------------------------------ End of file Cmplxser.txt