
  10.5 Direction Set (Powell's) Methods in Multidimensions 

  We know (§1O.1-§1O.3) how to minimize a function of one variable. If we start 
at a point P in N-dimensional space, and proceed from there in some vector 
direction n, then any function of N variables f(P) can be minimized along the 
line n by our one-dimensional methods. One can dream up various multidimensional 
minimization methods which consist of sequences of such line minimizations. 
Different methods will differ only by how, at each step, they choose the next 
direction n to try. All such methods  presume  the  existence  of  a  "black-box" 
sub-algorithm, which we might call LINMIN (given an explicit routine at the end 
of this section), whose definition can be taken for now as 

LIMIN: Given as input the vectors P and n, and 
the function f, find the scalar À that minimizes 
f(P + lambda*n). Replace P by P + lambda*n, 
Replace n by lambda*n. Done.

 
  All the minimization methods in this section and in the two sections following 
fall under this general schema of successive line minimizations. In this section 
we consider a class of methods whose choice of successive directions does not 
involve explicit computation of the function's gradient; the next two sections 
do require such gradient calculations. You will note that we need not specify 
whether LINMIN uses gradient information or not. That choice is up to you, and 
its  optimization  depends  on  your  particular  function.  You  would  be  crazy, 
however,  to  use  gradients  in  LINMIN  and  not  use  them  in  the  choice  of 
directions, since in this latter role they can drastically reduce the total 
computational burden. 

  But what if, in your application, calculation of the gradient is out of the 
question. You might first think of this simple method: Take the unit vectors el, 
e2, ... eN as a set of directions. Using LINMIN, move along the first direction 
to its minimum, then from there along the second direction to its minimum, and 
so on, cycling through the whole set of directions as many times as necessary, 
until the function stops decreasing. 

  This dumb method is actually not too bad for many functions. even more 
interesting is why it is bad, i.e. very inefficient, for some other functions. 
Consider a function of two dimensions whose contour map (level lines) happens to 
define a long, narrow valley at some angle to the coordinate basis vectors (see 
Figure 10.5.1). Then the only way "down the length of the valley" going along 
the  basis  vectors  at  each  stage  is  by  a  series  of  many  tiny  steps.  More 
generally, in N dimensions, if the function's second derivative are much larger 
in magnitude in some directions than in others, then many cycles through all N 
basis vectors will be required in order to get anywhere. This condition is not 
all that unusual; by Murphy's Law, you should count on it.



Figure 10.5.1. Successive minimizations along coordinate directions in a 
long, narrow "valley" (shown as contour lines). Unless the valley is  
optimally oriented, this method is exinefficient, taking many tiny steps 
to get to the minimum, crossing and re-crossing the principal axis.

 
  Obviously what we need is a better set of directions than the ei's. All 
direction  set  methods  consist  of  prescriptions  for  updating  the  set  of 
directions as the method proceeds, attempting to come up with a set which either 
(i) includes some very good directions that will take us far along narrow 
valleys,  or  (more  subtly)  (ii)  includes  some  number  of  "non-interfering" 
directions  with  the  special  property  that  minimization  along  one  is  not 
"spoiled" by subsequent minimization along another, so that interminable cycling 
through the set of directions can be avoided. 

                           Conjugate Directions
  This  concept  of  "non-interfering"  directions,  more  conventionally  called 
conjugate directions, is worth making mathematically explicit. 
First, note that if we minimize a function along sorne direction u, then the 
gradient of the function must be perpendicular to u at the line minimum; If not, 
then there would still be a nonzero directional derivative along u.



  Next take some particular point P as the origin of the coordinate system with 
coordinates x. Then any function f can be approximated by its Taylor series 

  The matrix A whose components are the second partial derivative matrix of the 
function is called the Hessian matrix of the function at P. 
  In the approximation of (10.5.1), the gradient of f is easily calculated as 
                  _

V f = A·x-b           (10.5.3)
 
(This  implies  that  the  gradient  will  vanish  -  the  function  will  be  at  an 
extremum - at a value of x obtained by solving A . x = b. This idea we will 
return to in §10.7!) 
                        _
  How does the gradient V f change as we move along some direction? 
Evidently           _

d(V f) = A . (dx)     (10.5.4)
 
  Suppose that we have moved along some direction u to a minimum and now propose 
to move along some new direction v. The condition that motion along v not spoil 
our minimization along u is just that the gradient stay perpendicular to u, i.e. 
that the change in the gradient be perpendicular to u. By equation (10.5.4) this 
is just 
                          _ 

0 = u d(Vf) = u· A· v  (10.5.5)
 
  When (10.5.5) holds for two vectors u and v, they are said to be conjugate. 
When the relation holds pairwise for all members of a set of vectors, they are 
said to be a conjugate set. If you do successive line minimization of a function 
along a conjugate set of directions, then you don't need to redo any of those 
directions (unless, of course, you spoil things by minimizing along a direction 
that they are not conjugate to).

  A triumph for a direction set method is to come up with a set of N linearly 
independent,  mutually  conjugate  directions.  Then,  one  pass  of  N  line 
minimizations will put it exactly at the minimum of a quadratic form like 
(10.5.1). For functions f which are not exactly quadratic forms, it won't be 
exactly at the minimum; but repeated cycles of N line minimizations will in due 
course converge quadratically to the minimum. 



               
Powell's Quadratically Convergent Method

  Powell first discovered a direction set method which does produce N mutually 
conjugate directions. Here is how it goes: Initialize the set of directions u, 
to the basis vectors, 

                   u  = e    i= 1, ... ,N        (10.5.6) 
                    i    i

Now  repeat  the  following  sequence  of  steps  ("basic  procedure")  until  your 
function stops decreasing: 

• Save your starting position as Po. 
• For i = 1,.,. ,N, move Pi-1 to the minimum along direction u, 
  and call this point Pi. 
• For i = 1, ... ,N - 1, set u, t- Ui+l. 
• Set UN t- P N - Po. 
• Move PN to the minimum along direction UN and cali this point Po. 

  Powell, in 1964, showed that, for a quadratic form like (lO.5.1), k iterations 
of the above basic procedure produce a set of directions u, whose last k members 
are  mutually  conjugate.  Therefore,  N  iterations  of  the  basic  procedure, 
amounting  to  N(N  +  1)  line  minimizations  in  all,  will  exactly  minimize  a 
quadratic form. Brent (1973) gives proofs of these statements in accessible 
form. 

  Unfortunately, there  is a  problem with  Powell's quadratically  convergent 
algorithm. The procedure of throwing away, at each stage, Ui in favor of Pn - Po 
tends to produce sets of directions that "fold up on each other" and become 
linearly dependent. Once this happens, then the procedure finds the minimum of 
the function f only over a subspace of the full N-dimensional case; in other 
words, it gives the wrong answer. Therefore, the algorithm must not be used in 
the form given above. 

  There are a number of ways to fix up the problem of linear dependence in 
Powell's algorithm, among them: 

  1· You can reinitialize the set of directions ui, to the basis vectors 
ei, after every N or N + 1 iterations of the basic procedure. This produces a 
serviceable  method,  which  we  commend  to  you  if  quadratic  convergence  is 
important for your application (i.e. if your functions are close to quadratic 
forms and if you desire high accuracy).

  2. Brent points out that the set of directions can equally well be reset 
to the columns of any orthogonal matrix. Rather than throw away the information 
on  conjugate  directions  already  built  up,  he  resets  the  direction  set  to 
calculated principal directions of the matrix A (which he gives a procedure for 
determining).  The  calculation  is  essentially  a  singular  value  decomposition 
algorithm (see §2.9). Brent has a number of other cute tricks up his sleeve, and 
his  modification  of  Powell's  method  is  probably  the  best  presently  known. 
Consult  his  book  for  a  detailed  description  and  listing  of  the  program. 
Unfortunately it is rather too elaborate for us to include here. 

  3. You can give up the property of quadratic convergence in favor of a 
more heuristic scheme (due to Powell) which tries to find a few good directions 
along narrow valleys instead of N necessarily conjugate directions. This is the 
method which we now implement. (It is also the version of Powell's method given 
in Acton, from which parts of the following discussion are drawn). 



Powell's Method Discarding the Direction of Largest Decrease

  The fox and the grapes: Now that we are going to give up the property of 
quadratic  convergence,  was  it  so  important  after  ail?  That  depends  on  the 
function that you are minimizing. Some applications produce functions with long, 
twisty valleys. Quadratic convergence is of no particular advantage to a program 
which must slalom down the length of a valley floor that twists one way and 
another (and another, and another, ... - there are N dimensions!). Along the 
long direction, a quadratically convergent method is trying to extrapolate to 
the minimum of a parabola which just isn't (yet) there; while the conjugacy of 
the N - 1 transverse directions keeps getting spoiled by the twists. 

  Sooner or later, however, we do arrive at an approximately ellipsoidal minimum 
(cf. equation 10.5.1 when b, the gradient, is zero). Then, depending on how much 
accuracy we require, a method with quadratic convergence can save us several 
times  N2  extra  line  minimizations,  since  quadratic  convergence  doubles  the 
number of significant figures at each iteration. 

  The basic idea of our now-modified Powell's method is still to take Pn - P0 as 
a new direction; it is, after all, the average direction moved after trying all 
N possible directions. For a valley whose long direction is twisting slowly, 
this direction is likely to give us a good run along the new long direction. The 
change is to discard the old direction along which the function f made its 
largest decrease. This seems paradoxical, since that direction was the best of 
the previous iteration. However, it is also likely to be a major component of 
the new direction that we are adding, so dropping it gives us the best chance of 
avoiding a buildup of linear dependence. 

  There are a couple of exceptions to this basic idea. Sometimes it is better 
not to add a new direction at aIl. Define 

f0 ~ f(Po)   fN ~ f(PN)   fE ~ f(2PN - Po)      (10.5.7)
   

Here fE is the function value at an "extrapolated" point somewhat further along 
the proposed new direction. Also define deltaf to be the magnitude of the 
largest decrease along one particular direction of the present basic procedure 
iteration. (deltaf is a positive number.) Then: 

  1. If fE >= f0, then keep the old set of directions for the next basic 
procedure, because the average direction P N - Po is all played out.
 

  2. If 2 (f0-2fN+fE) [(fo- fN)-deltafj² >= (fo- fE)²/deltaf, then keep 
the old set of directions for the next basic procedure, because either (i) the 
decrease  along  the  average  direction  was  not  primarily  due  to  any  single 
direction's decrease, or (ii) there is a substantial second derivative along the 
average direction and we seem to be near to the bottom of its minimum. 

  The following routine (powell) implements Powell's method in the version just 
described.  ln  the  routine,  XI  is  the  matrix  whose  columns  are  the  set  of 
directions Ni; otherwise the correspondence of notation should be self-evident. 

  [From BIBLI08].


