/* ------------------------------------------------------------------------- ! Program to calculate the first zeroes (root abscissas) of the first ! kind Bessel function of integer order N using the subroutine ROOTJ. ! -------------------------------------------------------------------------- ! SAMPLE RUN: ! ! (Calculate the first 10 zeroes of 1st kind Bessel function of order 2). ! ! Zeroes of Bessel Function of order: 2 ! ! Number of calculated zeroes: 10 ! ! Table of root abcissas (5 items per line) ! 5.135622 8.417244 11.619841 14.795952 17.959819 21.116997 24.270112 27.420574 30.569204 33.716520 ! ! Table of error codes (5 items per line) ! 0 0 0 0 0 ! 0 0 0 0 0 ! ! -------------------------------------------------------------------------- ! Reference: From Numath Library By Tuan Dang Trong in Fortran 77 ! [BIBLI 18]. ! ! C++ Release 1.0 By J-P Moreau, Paris ! (www.jpmoreau.fr) ! ------------------------------------------------------------------------ */ #include #include #define SIZE 11 double JZ[SIZE]; int IE[SIZE]; int i,j, N,NR; void SECANT(int N,int NITMX, double TOL, double *ZEROJ, int *IER); double BESSJ(int N, double X); double BESSJ0(double X); double BESSJ1(double X); double Sign(double a, double b) { if (b>=0.0) return (fabs(a)); else return (-fabs(a)); } //---------------------------------------------------------------------- void ROOTJ(int N, int NK, double *JZERO, int *IER) { /*---------------------------------------------------------------------- ! CALCULATE THE FIRST NK ZEROES OF BESSEL FUNCTION J(N,X) ! ! INPUTS: ! N ORDER OF FUNCTION J (INTEGER >= 0) I*4 ! NK NUMBER OF FIRST ZEROES (INTEGER > 0) I*4 ! OUTPUTS: ! JZERO(NK) TABLE OF FIRST ZEROES (ABCISSAS) R*8 ! IER(NK) TABLE OF ERROR CODES (MUST BE ZEROES) I*4 ! ! REFERENCE : ! ABRAMOWITZ M. & STEGUN IRENE A. ! HANDBOOK OF MATHEMATICAL FUNCTIONS ! -------------------------------------------------------------------- */ double ZEROJ,B0,B1,B2,B3,B5,B7,T0,T1,T3,T5,T7,FN,FK; double C1,C2,C3,C4,C5,F1,F2,F3,TOL,ERRJ, PI; int IERROR,K,NITMX; TOL=1E-8; NITMX=10; PI=4.0*atan(1.0); C1=1.8557571; C2=1.033150; C3=0.00397; C4=0.0908; C5=0.043; FN = 1.0*N; // FIRST ZERO if (N==0) { ZEROJ = C1+C2-C3-C4+C5; SECANT(N,NITMX,TOL,&ZEROJ,&IERROR); IER[1]=IERROR; JZERO[1]=ZEROJ; } else { F1 = pow(FN,(1.0/3.0)); F2 = F1*F1*FN; F3 = F1*FN*FN; ZEROJ = FN+C1*F1+(C2/F1)-(C3/FN)-(C4/F2)+(C5/F3); SECANT(N,NITMX,TOL,&ZEROJ,&IERROR); IER[1]=IERROR; JZERO[1]=ZEROJ; } T0 = 4.0*FN*FN; T1 = T0-1.0; T3 = 4.0*T1*(7.0*T0-31.0); T5 = 32.0*T1*((83.0*T0-982.0)*T0+3779.0); T7 = 64.0*T1*(((6949.0*T0-153855.0)*T0+1585743.0)*T0-6277237.0); // OTHER ZEROES for (K = 2; K <= NK; K++) { JZERO[K] = 0.0; FK = 1.0*K; // MAC MAHON'S SERIES FOR K>>N B0 = (FK+0.5*FN-0.25)*PI; B1 = 8.0*B0; B2 = B1*B1; B3 = 3.0*B1*B2; B5 = 5.0*B3*B2; B7 = 7.0*B5*B2; ZEROJ = B0-(T1/B1)-(T3/B3)-(T5/B5)-(T7/B7); ERRJ=fabs(BESSJ(N,ZEROJ)); // IMPROVE SOLUTION USING PROCEDURE SECANT if (ERRJ > TOL) SECANT(N,NITMX,TOL,&ZEROJ,&IERROR); JZERO[K]=ZEROJ; IER[K]=IERROR; } } // ------------------------------------------------------------------------------ void SECANT(int N,int NITMX, double TOL, double *ZEROJ, int *IER) { //Labels: e5,e10,e15,e20 double P0,P1,Q0,Q1,DP,P; double C[3]; int IT,NEV,NTRY; C[1]=0.95; C[2]=0.999; NTRY=1; *IER=0; e5: P0 = C[NTRY]*(*ZEROJ); P1 = *ZEROJ; NEV = 2; Q0 = BESSJ(N,P0); Q1 = BESSJ(N,P1); for (IT = 1; IT <= NITMX; IT++) { if (Q1==Q0) goto e15; P = P1-Q1*(P1-P0)/(Q1-Q0); DP = P-P1; if (IT==1) goto e10; if (fabs(DP) < TOL) goto e20; e10: NEV = NEV+1; P0 = P1; Q0 = Q1; P1 = P; Q1 = BESSJ(N,P1); } e15: NTRY++; if (NTRY <= 2) goto e5; *IER = NTRY; e20: *ZEROJ = P; } // -------------------------------------------------------------------- double BESSJ(int N, double X) { /* THIS FUNCTION RETURNS THE VALUE OF THE FIRST KIND BESSEL FUNCTION OF ORDER N, INTEGER FOR ANY REAL X. WE USE HERE THE CLASSICAL RECURRENT FORMULA, WHEN X > N. FOR X < N, THE MILLER'S ALGORITHM IS USED TO AVOID OVERFLOWS. REFERENCE : C.W.CLENSHAW, CHEBYSHEV SERIES FOR MATHEMATICAL FUNCTIONS, MATHEMATICAL TABLES, VOL.5, 1962. */ int IACC = 40; double BIGNO = 1e10, BIGNI = 1E-10; double TOX,BJM,BJ,BJP,SUM,TMP; int J,JSUM,M; if (N==0) return BESSJ0(X); if (N==1) return BESSJ1(X); if (X==0.0) return 0.0; TOX = 2.0/X; if (X > N) { BJM = BESSJ0(X); BJ = BESSJ1(X); for (J = 1; J0; J--) { BJM = J*TOX*BJ-BJP; BJP = BJ; BJ = BJM; if (fabs(BJ) > BIGNO) { BJ *= BIGNI; BJP *= BIGNI; TMP *= BIGNI; SUM *= BIGNI; } if (JSUM != 0) SUM += BJ; JSUM = 1-JSUM; if (J == N) TMP = BJP; SUM = 2.0*SUM-BJ; } return (TMP/SUM); } } // ---------------------------------------------------------------------- double BESSJ0(double X) { /* THIS FUNCTION RETURNS THE VALUE OF THE FIRST KIND BESSEL FUNCTION OF ORDER 0 FOR ANY REAL X. WE USE HERE THE POLYNOMIAL APPROXIMATION BY SERIES OF CHEBYSHEV POLYNOMIALS FOR 0