SPECIAL FUNCTIONS IN C/C++


Choose a source program (*.cpp) by clicking the appropriate button.

MBERNOA.CPP
MEULERA.CPP
MMTU0.CPP
MAIRYA.CPP
MAIRYZO.CPP
MBETA.CPP
MCISIA.CPP
MCVA1.CPP
MCHGM.CPP
MSTVH0.CPP
MSTVH1.CPP
MSTVHV.CPP
MSTVL0.CPP
MSTVL1.CPP
MSTVLV.CPP
ARCSIN.CPP
HYPER.CPP
HYPER.TXT
INVHYPER.CPP
INVHYPER.TXT
CLIPTIC.CPP
CLIPTIC.TXT
HERMITE.CPP
SININT.CPP
TSININTEGRAL.CPP
LAGUERRE.CPP
LEGENDRE.CPP
EVAL_LEG.CPP
STEEPDA.CPP
STEEPDA.TXT
STEEPDS.CPP
STEEPDS.TXT
ARMATH.H
ARMATH.CPP
FONCTION.CPP
GRFUNCT.CPP
GRFUNCT1.CPP
GRFUNCT1.MAK
Program Description

  • Program to compute Bernoulli numbers using function BERNOA
  • Program to compute Euler numbers using function EULERA
  • Calculate Mathieu Functions and their First Derivatives
  • Calculate Airy functions and their First Derivatives using Subroutine AIRYA NEW
  • Calculate the first NT zeros of Airy functions NEW
  • Calculate Beta Function NEW
  • Calculate the cosine and sine integrals using subroutine CISIA NEW
  • Calculates a specific characteristic value of Mathieu functions using subroutine CVA1
  • Compute the confluent hypergeometric function M(a,b,x) using subroutine CHGM NEW
  • Compute the Struve function H0(x) using subroutine STVH0 NEW
  • Compute the Struve function H1(x) using subroutine STVH1 NEW
  • compute the Struve function Hv(x) for an arbitrary order v using subroutine STVHV NEW
  • Compute the modified Struve function L0(x) using subroutine STVL0 NEW
  • Compute the modified Struve function L1(x) using subroutine STVL1 NEW
  • compute the modified Struve function Lv(x) for an arbitrary order v using subroutine STVLV NEW
  • Program to demonstrate arcsine recursion
  • Program to demonstrate Hyperbolic Functions
  • Explanation File of Program above (Hyper)
  • Program to demonstrate Inverse Hyperbolic Functions
  • Explanation File of Program above (Invhyper)
  • Program to demonstrate Evaluating elliptic integrals of first and second kinds (complete)
  • Explanation File of Program above (Cliptic)
  • Program to demonstrate Hermite coefficients
  • Module to calculate sinintegral(x) or cosintegral(x)
  • Demonstration Program of Module Sinint
  • Program to demonstrate Laguerre coefficients
  • Program to demonstrate Legendre coefficients
  • Evaluate a Legendre Polynomial P(x) of Order n for argument x by using Horner's Rule
  • Program to demonstrate multi-dimensional Steepest Descent Optimization (Partial derivatives not required)
  • Explanation File of Program above (Steepda)
  • Program to demonstrate multi-dimensional Steepest Descent Optimization (Partial derivatives required)
  • Explanation File of Program above (Steepds)
  • Header file used by modules and programs below
  • Math module used by programs using functions
  • Module to compile and evaluate a user defined function
  • Program to evaluate a real function F(x) or F(t) defined by its equation
  • Program to draw a real function F(x) or F(t) defined by its equation
  • Grfunct1 Project File


RETURN


© J-P Moreau Last modified 06/05/2014 - E-mail: jpmoreau@wanadoo.fr