SPECIAL FUNCTIONS IN FORTRAN 90


Choose a source program (*.F90) by clicking the appropriate button.

MBERNOA.F90
MEULERA.F90
MMTU0.F90
MAIRYA.F90
MAIRYZO.F90
MBETA.F90
MCISIA.F90
MCVA1.F90
MCHGM.F90
MSTVH0.F90
MSTVH1.F90
MSTVHV.F90
MSTVL0.F90
MSTVL1.F90
MSTVLV.F90
ARCSIN.F90
HYPER.F90
HYPER.TXT
INVHYPER.F90
INVHYPER.TXT
CLIPTIC.F90
CLIPTIC.TXT
HERMITE.F90
SININT.F90
TSININTEGRAL.F90
LAGUERRE.F90
LEGENDRE.F90
EVAL_LEG.F90
STEEPDA.F90
STEEPDA.TXT
STEEPDS.F90
STEEPDS.TXT
Program Description

  • Program to compute Bernoulli numbers using function BERNOA
  • Program to compute Euler numbers using function EULERA
  • Calculate Mathieu Functions and their First Derivatives
  • Calculate Airy functions and their First Derivatives using Subroutine AIRYA NEW
  • Calculate the first NT zeros of Airy functions NEW
  • Calculate Beta Function NEW
  • Calculate the cosine and sine integrals using subroutine CISIA NEW
  • Calculates a specific characteristic value of Mathieu functions using subroutine CVA1
  • Compute the confluent hypergeometric function M(a,b,x) using subroutine CHGM NEW
  • Compute the Struve function H0(x) using subroutine STVH0 NEW
  • Compute the Struve function H1(x) using subroutine STVH1 NEW
  • compute the Struve function Hv(x) for an arbitrary order v using subroutine STVHV NEW
  • Compute the modified Struve function L0(x) using subroutine STVL0 NEW
  • Compute the modified Struve function L1(x) using subroutine STVL1 NEW
  • compute the modified Struve function Lv(x) for an arbitrary order v using subroutine STVLV NEW
  • Program to demonstrate arcsine recursion
  • Program to demonstrate Hyperbolic Functions
  • Explanation File of Program above (Hyper)
  • Program to demonstrate Inverse Hyperbolic Functions
  • Explanation File of Program above (Invhyper)
  • Program to demonstrate Evaluating elliptic integrals of first and second kinds (complete)
  • Explanation File of Program above (Cliptic)
  • Program to demonstrate Hermite coefficients
  • Module to calculate sinintegral(x) or cosintegral(x)
  • Demonstration Program of Module Sinint
  • Program to demonstrate Laguerre coefficients
  • Program to demonstrate Legendre coefficients
  • Evaluate a Legendre Polynomial P(x) of Order n for argument x by using Horner's Rule
  • Program to demonstrate multi-dimensional Steepest Descent Optimization (Partial derivatives not required)
  • Explanation File of Program above (Steepda)
  • Program to demonstrate multi-dimensional Steepest Descent Optimization (Partial derivatives required)
  • Explanation File of Program above (Steepds)


RETURN


© J-P Moreau Last modified 06/05/2014 - E-mail: jpmoreau@wanadoo.fr