SPECIAL FUNCTIONS IN PASCAL


Choose a source program (*.pas) by clicking the appropriate button.

MBERNOA.PAS
MEULERA.PAS
MMTU0.PAS
MAIRYA.PAS
MAIRYZO.PAS
MBETA.PAS
MCISIA.PAS
MCVA1.PAS
MCHGM.PAS
MSTVH0.PAS
MSTVH1.PAS
MSTVHV.PAS
MSTVL0.PAS
MSTVL1.PAS
MSTVLV.PAS
ARCSIN.PAS
HYPER.PAS
HYPER.TXT
INVHYPER.PAS
INVHYPER.TXT
CLIPTIC.PAS
CLIPTIC.TXT
HERMITE.PAS
LAGRANGE.PAS
LAGRANGE.TXT
LAGUERRE.PAS
LEGENDRE.PAS
EVAL_LEG.PAS
TSEVAL.PAS
MNBRAK.PAS
GOLDEN.PDF
GOLDEN.PAS
BRENT.PDF
BRENT.PAS
AMOEBA.PDF
TAMOEBA.PAS
STEEPDA.PAS
STEEPDA.TXT
STEEPDS.PAS
STEEPDS.TXT
Program Description

  • Program to compute Bernoulli numbers using function BERNOA
  • Program to compute Euler numbers using function EULERA
  • Calculate Mathieu Functions and their First Derivatives
  • Calculate Airy functions and their First Derivatives using Subroutine AIRYA NEW
  • Calculate the first NT zeros of Airy functions NEW
  • Calculate Beta Function NEW
  • Calculate the cosine and sine integrals using subroutine CISIA NEW
  • Calculates a specific characteristic value of Mathieu functions using subroutine CVA1
  • Compute the confluent hypergeometric function M(a,b,x) using subroutine CHGM NEW
  • Compute the Struve function H0(x) using subroutine STVH0 NEW
  • Compute the Struve function H1(x) using subroutine STVH1 NEW
  • compute the Struve function Hv(x) for an arbitrary order v using subroutine STVHV NEW
  • Compute the modified Struve function L0(x) using subroutine STVL0 NEW
  • Compute the modified Struve function L1(x) using subroutine STVL1 NEW
  • compute the modified Struve function Lv(x) for an arbitrary order v using subroutine STVLV NEW
  • Program to demonstrate arcsine recursion
  • Program to demonstrate Hyperbolic Functions
  • Explanation File of Program above (Hyper)
  • Program to demonstrate Inverse Hyperbolic Functions
  • Explanation File of Program above (Invhyper)
  • Program to demonstrate Evaluating elliptic integrals of first and second kinds (complete)
  • Explanation File of Program above (Cliptic)
  • Program to demonstrate Hermite coefficients
  • Program to demonstrate Lagrange interpolation
  • Explanation File of Program above (Lagrange)
  • Program to demonstrate Laguerre coefficients
  • Program to demonstrate Legendre coefficients
  • Evaluate a Legendre Polynomial P(x) of Order n for argument x by using Horner's Rule
  • Cubic spline interpolation of a discreet function F(X), given by N points X(I),Y(I)
  • Bracketing a minimum of a real function F(X)
  • Explanation file of program below(GOLDEN)
  • Seek Minimum of a real function F(X) by Golden Section Search
  • Explanation file of program below(BRENT)
  • Seek Minimum of a real function F(X) by Brent's Method
  • Explanation file of program below(TAMOEBA)
  • Multidimensional minimization of a function FUNC(X) where X is an NDIM-dimensional vector, by the downhill simplex method of Nelder and Mead Discarding the Direction of Largest Decrease
  • Program to demonstrate multi-dimensional Steepest Descent Optimization (Partial derivatives not required)
  • Explanation File of Program above (Steepda)
  • Program to demonstrate multi-dimensional Steepest Descent Optimization (Partial derivatives required)
  • Explanation File of Program above (Steepds)


RETURN


© J-P Moreau Last modified 06/05/2014 - E-mail: jpmoreau@wanadoo.fr